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A theory for the contrast from phonon-scattered electrons is presented. In this theory single-phonon 
scattering is taken into account. The influence of the strain field of the crystal defect on the electrons 
which have been scattered by phonons is considered dynamically. The dislocation contrast in the 
thermal diffuse intensity is calculated under weak-beam conditions at 100 kV and 1MV. It is shown that 
the thermal diffuse and elastic intensities are comparable in magnitude for foil thicknesses of the order of 
the mean free path for electron-phonon scattering. The thermal diffuse intensity has a minimum close to 
the position of the dislocation. The dependence of the visibility in weak-beam images on the foil thick- 
ness, the accelerating voltage, the aperture radius and the temperature is discussed. The diffuse intensity 
from contaminating carbon layers has been estimated. 

1. Introduction 

In conventional contrast calculations phonon scatter- 
ing is only taken into account in the absorption par- 
ameters. The phonon scattering involves large angles 
and a large proportion of the electrons are scattered 
outside the aperture and do not contribute to the image. 
Consequently under strong-beam conditions, if the 
foil thickness is not much larger than the mean free 
path for phonon scattering, the thermal diffuse inten- 
sity is small compared to the elastic intensity. If, how- 
ever, the elastic intensity is low, as in weak-beam 
images, the intensity from electrons scattered by pho- 
nons into the aperture may give a significant contribu- 
tion to the intensity. 

The thermal diffuse intensity in perfect crystals has 
been calculated, for example, by Takagi (1958) and 
Gjonnes (1966) in order to study Kikuchi patterns. 
These authors took single-phonon scattering into ac- 
count. The influence of multiple scattering has been 
investigated by Hoier (1972). 

The contrast from phonon-scattered electrons has 
been studied for perfect wedge-shaped crystals by 
Castaing et al. (1967). With the crystal oriented close 
to a low-order Bragg position a weak depth oscilla- 
tion was observed in the thermal diffuse intensity. 
Natta (1968) used first-order perturbation theory to 
show that these oscillations were caused by the simul- 
taneous phonon scattering of two Bloch waves. The 
influence of a stacking fault on the diffuse intensity 
has been investigated by Kamiya & Nakai (1971). They 
evaluated the transition probabilities for phonon scat- 
tering in order to obtain a qualitative explanation of 
the experimental results. 

In the present paper the influence of the thermal 
diffuse intensity on the dislocation contrast under 
weak-beam conditions will be investigated. In § 2 and 
the Appendix a theory for the contrast of the thermal 
diffuse intensity is presented. Most of the diffuse in- 
tensity comes from scattering between a few Bloch 
waves. This is analysed in § 3. An approximate ana- 

lyrical expression for the thermal diffuse intensity is 
derived in § 4. The results of the contrast calculations 
of dislocations are presented in § 5. In § 6 the differ- 
ence in contrast from dislocations close to the top and 
bottom foil surfaces, a so-called top-bottom effect, is 
discussed. How the thermal diffuse intensity depends 
on the foil thickness and aperture size is considered 
in § 7. The diffuse intensity from contaminating layers 
is estimated and its magnitude is compared with the 
magnitude of the thermal diffuse intensity. Finally in 
§ 8, the variations of the visibility with accelerating 
voltage, foil thickness, aperture radius and tempera- 
ture are discussed. 

2. Contrast theory 

Thermal diffuse intensity can be calculated using either 
the deformable ion model (DIM) or the rigid ion 
model (RIM) (Takagi, 1958). The main difference be- 
tween these models is that DIM but not RIM gives 
zero matrix elements for scattering in the first Brillouin 
zone. In the weak-beam case this implies that the tran- 
sition probabilities for intraband scattering are negli- 
gible. Actual calculations show, however, that the in- 
tensity contribution from the intraband processes can 
be neglected in RIM also compared to the interband 
processes. Thus the differences between the two models 
have a small influence on the results under weak-beam 
conditions. In this paper DIM has been used because 
it is somewhat simpler to handle. The derivation of 
the equations for the Bloch-wave amplitudes of the 
phonon-scattered electrons is presented in the Appen- 
dix. The result for phonon annihilation is 

(d.) 
~oOi~_ ,z)= 2hi ~ C~* g . Cg 

× exp [2ni(k~_- z kp-)z,  z]~o(k~_,z) 

+ 2n z ~, C~* 1 [ hn°a .l m 
gb, ~h-= q [eaa"  (h-g) ]  2N--M-~q,J 

x exp [2niOt~o + q z - k , _ ) z .  zl~o(k~,z). (1) 
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~o(k~_ ,z) is the amplitude at depth z and C~ the co- 
efficient of the Bloch wave with wavevector k~_ (p-  
indicates phonon annihilation). The initially excited 
Bloch waves have the wave vectors ko ~. ~g is the two- 
beam extinction distance for the reciprocal-lattice vec- 
tor g. The lattice strains are given by R(r). The crystal 
contains N atoms of mass M, ~q~ is the polarization 
vector, c%~ the angular frequency and nq~° the occupa- 
tion number of the phonon mode (q,2). The first term 
on the right-hand side takes into account the elastic 
scattering between the electrons which have been scat- 
tered by phonons. It has the same form as the expres- 
sion for elastic scattering in the conventional many- 
beam theory (see e.g. Cockayne, 1972). The second 
term describes the phonon scattering from the primarily 
excited Bloch waves. It is equivalent to the correspond- 
ing term for plasmon scattering derived by Howie 
(1963). 
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Fig. 1. Dispersion surfaces at 100 kV illustrating the numbering 
of the Bloch waves. 
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Fig. 2. Dispersion surfaces under weak-beam conditions at 
100 kV (H< 3). The figure is not to scale. 

The thermal diffuse intensity contributing to the 
weak-beam image from the reflexion g is obtained by 
summing over all phonon processes which allow the 
electrons to pass through the aperture. Electrons scat- 
tered by different phonons have different energy and 
cannot interfere coherently and consequently their in- 
tensities rather than their amplitudes have to be added. 
The intensity around the reflexion g can be written 

IgPh(t)= ~ {] ~ fo(k~_,t)Cg l exp [2ni(k~_)~t][ 2 
q~.i l 

~0(kp+,t)C~ exp [2ni(k~+)zt]]2}, (2) 
l 

where the two terms take into account phonon an- 
nihilation and creation respectively, t is the foil thick- 
ness. In the summation over l only Bloch waves rep- 
resenting electrons which have been scattered by the 
same phonon should be included (of. the discussion 
of Fig. 2). For every primary Bloch wave i the sum- 
mation of phonon wavevectors q is restricted to 
those components in the plane of the foil which are 
inside the aperture. Since q is restricted to the first 
Brillouin zone, (2) is only valid for apertures entirely 
inside the zone. 

In the formulae (1) and (2) only single-phonon scat- 
tering has been taken into account. By introducing 
absorption coefficients for phonon scattering also pro- 
cesses where the phonon-scattered electrons are scat- 
tered a second time out of the aperture are considered. 
Processes where the electrons have first been thermally 
scattered somewhere outside the aperture and then 
scattered back into the aperture are neglected. The im- 
portance of such processes increases with increasing 
foil thickness and our description cannot be expected 
to be valid for foil thicknesses much greater than the 
mean free path for phonon scattering. The influence 
of electronic excitations on the diffuse intensity has 
been neglected throughout the present article. 

3. Weak-beam contrast 

The phonon-scattered intensity has been calculated at 
100 kV and 1 MV. The situation at 100 kV is illustrated 
in Fig. 1. The crystal is oriented so that the Ewald 
sphere intersects the systematic row at Hgl where 
gt is the first-order reciprocal-lattice vector in the sys- 
tematic row, such that H > 0 .  The weak beam +gl  is 
studied. The Bloch waves are numbered so that the 
plane wave exp [2ni(k"+ng0.  r], represented by a 
circle in Fig. 1, contributes the most to Bloch wave n 
indicated by a broken line in Fig. 1 (of. Cockayne, 
1972). 

In the calculations a four-beam approximation has 
been used. On the left-hand side of Fig. 2 the disper- 
sion surfaces of the elastically scattered electrons are 
shown. These primary states are connected to the 
phonon-scattered states by phonon wave vectors. The 
diffusely scattered states are denoted by primed num- 
bers. The different dashed lines indicate that electrons 



118 D I S L O C A T I O N  C O N T R A S T  IN W E A K - B E A M  I M A G E S  

which are scattered by different phonons do not inter- 
fere coherently. The most important phonon-scatter- 
ing processes are shown in the figure. The direct pro- 
cess 0 to 1' is dominating since the incident electron 
gives the largest contribution to Bloch wave 0 and 
Bloch wave 1' contributes the most to the g~ image. 
The importance of the other scattering processes can 
be estimated by evaluating the corresponding terms 
of equation (1). 

An excitation error sgx___0.02 A. -1 for a 220 row 
corresponds in most metals to H = 3 ,  thus making the 
elastic scattering from the dislocation between Bloch 
waves 1' and 2' dynamical. If the elastic scattering 
between the diffuse states is strong the thermal diffuse 
intensity accepted by the aperture is sensitive to the 
position of the Kikuchi lines. For H values close to 
three at 100 kV the - g l  edge of the central Kikuchi 
band is close to the gl spot and influences the diffuse 
intensity in the gt image. In the four-beam approxima- 
tion this is taken into account. 

At 1 MV the situation is slightly different as shown 
in Fig. 3. Since the curvature of the Ewald sphere 
decreases with increasing voltage a larger H value is 
required at 1 MV to obtain the same excitation error 
than at 100 kV. At 1 MV the -g~ beam ( H > 0 )  is 
mostly used to form the weak-beam image. In this 
case the elastic scattering from the defect between the 
Bloch waves is weak and principally kinematical in 
character and the influence of the Kikuchi lines on 
the - g l  image is much gmaller that at 100 kV. 

To obtain the phonon-scattered intensity accepted 
by the aperture we sum over the phonon wave vectors 
as indicated in (2). This sum includes processes where 
the wave vector is not conserved in the z direction. 
Such processes have a strong influence on the diffuse 
contrast, as we shall see. It follows from periodic 
boundary conditions that the z component of the 
phonon wave vectors q= takes values of the form 

n 
q ~  - -  , 

t 

where n is an integer. The summations over qz should 
be performed over these values. For every qz the Bloch- 
wave amplitudes in (2) are assumed to be constant 
over the aperture (see Appendix). The summation over 
q in the plane of the foil can then be reduced to a one- 
dimensional integral which is performed numerically. 
For aperture sizes within the first Brillouin zone, cen- 
tred around the reciprocal-lattice vectors, this is a good 
approximation at 1 MV because of the large H values 
used. At lower voltages smaller H values are required 
and the approximation is somewhat less satisfactory 
for large aperture radii. 

4. Long-range  contrast  

In this section an analytical estimate of the diffuse in- 
tensity is made which is valid at large distances from 

the dislocation. The following transformation of the 
Bloch-wave amplitudes is introduced 

~0'(k~,z) = - '''~'z~, t~,p,z) exp [2rciTZZgx . R(z)] , (3) 

where T" = z. Y Cg (g/g~)Cg. We neglect the elastic in- 
g 

terband scattering ( j# l )  in equation (1). By estimat- 
ing the different terms in equation (1) it is possible 
to show that this is a reasonable approximation at a 
distance of a few s ~  from the dislocation (cf. the 
width of the weak-beam peak ocs~ which is caused 
by interband scattering). For the dominating phonon 
scattering process (0-+  l') the following expression is 
obtained from (A4) and (A5) 

~0 '''l"z' t) L~p, 

~ dz ~ (2rcz)c~'*[(h-g). ~]Cg 2 N M ~  
0 h g  

× exp (27riSk. z) 

×exp [27zi(T °°-  TrV)g~. R(z)]~"(k°,z),  l ' ~ 0 ' ,  (4) 

where the wave-vector error 6k is equal to (k0°+q - 
l ' kp )z. The Bloch-wave coefficients can be calculated 

with first-order perturbation theory (Sandstr6m, 
1973a). One finds that C l g l = l  and T ° ° - T  " ~ - I .  If 
we assume that _,,,-,.0 z) is constant through the foil gJ L~-0, 
which is well satisfied under weak-beam conditions, 
we obtain 

It l e ~t 
q) (kp, t) oc dz exp 2zri(- l 'gl • R(z) + Ok. z ) .  (5) 

3 0 

As an example we consider the following strain field 
from a screw dislocation g l .  R = g l  .b/2rc arctan 
[(z-y)/x] (see e.g. Hirsch, Howie, Nicholson, Pashley 
& Whelan, 1965, p. 251) where y is the position of the 
dislocation and x is the distance from the dislocation 
in the plane parallel to the foil surface. 

Close to the dislocation (Ixl,Ct) the phase in the 
integrand changes rapidly by l ' g t .  brc when going 
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Fig. 3. Dispers ion  surfaces under  weak -beam condi t ions  at 
1 MV. The main scattering processes are shown.  The  figure 
is not to scale. 
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from above to below the dislocation. Further away 
from the dislocation the strain field varies more slowly. 
The phase has a negligible influence on the integral 
at a distance of a few foil thicknesses from the disloca- 
tion. The small wave-vector errors, ilk=n/t, pick up 
the slowly varying part of the phase factor as the in- 
tegral is performed. The intensity of every phonon 
scattering process thus has a long-range variation. 

In a perfect crystal where R(z)=0  almost all the 
diffuse intensity comes from the wave-vector conserv- 
ing process (ilk =0). In fact, from the approximate ex- 
pression for ~" given in (5) the contribution from non- 
conserving processes vanishes altogether. However, in 
the presence of a defect a finite 6k can reduce the varia- 
tion of the integrand of (5) around the defect and 
hence increase the value of the integral. Scattering 
processes with a finite wave-vector error can give a 
substantial contribution to the intensity. 

The total phonon-scattered intensity is obtained by 
summing over several 6k values. For simplicity we as- 
sume for the moment being that the phonon occupa- 
tion number nq and the angular frequency o~q are in- 
dependent of ilk. The phonon-scattered intensity is 
then proportional to 

1 I ' [2~zi(-l'gl.R(z)+-i-. /~"hg'(t) ~ t -  n ~ f0 dzexp n z)]i 
(6) 

The summation over n is performed over the number 
of available states in the first Brillouin zone. This 
number is approximately t/a, where a is the lattice 
parameter. If the summation is extended to infinity, 
Parseval's relation for complex Fourier series 

1 ig(x)12dx= IC. I  2 
t 0 n = - o o  

Y total 

f  ,ko 
/ ~ ' ~ k  :-I/t 
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Fig. 4. Thermal  diffuse intensity a r o u n d  a 2--20 spot  at 1MV. 
A screw dislocation,  satisfying g~. b =  1, is in the middle  
of  a copper  foil o f  thickness 2400 /~. s ~ - ~ o = - 0 . 0 2  A -1 
( H =  6.4). The aper ture  radius used is 0.2 of  a 220 reciprocal-  
lattice vector  and the t empera tu re  is 300K in all figures 
unless otherwise stated. 

where 

gives 
'I' 12  7) dx C, = --{ 0g(x) exp 

i 
t 

l~h,g,(t)oc dzl exp27~i[- / 'g l .R(z)] lz=t .  (8) 
0 

This is exactly the same result as for a perfect crystal 
which is obtained by putting R(z)= 0 in (6). The long- 
range contrast of the total phonon-scattered intensity 
thus disappears if an infinite number of phonon modes 
are available. For a typical foil thickness of 1000 A 
the first Brillouin zone has 200 or 300 phonon states in 
the z direction. Calculations show that this number of 
states is quite sufficient to yield a negligible long-range 
contrast. 

5. Contrast calculations 

Fig. 4 shows the thermal diffuse contrast of a screw 
dislocation, satisfying ]gl. bl = 1, in the m~ddle of a 
copper  foil at 1 MV. The wave vector conserving 
process, Ok = 0, gives an intensity which has a minimum 
at the position of the dislocation. This is in agreement 
with (5) since g l .  R has a rapid increase of ½ at the 
dislocation. Consequently the integrand changes its 
sign, and if the dislocation is in the middle of the foil, 
the resulting intensity will vanish. The non-conserving 
processes Ok= _+ lit have their largest contribution on 
either side of the dislocation which can also be seen 
from (5) by rewriting it in the following form 

tt [" I t q7 (kp, t)oc dz 
0 

[g](  d.(z, ) 
x exp 2zd - l ' g l  • ~ z - 7 -  +Ok dz ' ] ,  (9) 

where gl.  dR/dz = g~. b/2z~, x/[(y- z) 2 + x 2] for a screw 
dislocation. The largest absolute value of the ampli- 
tude ~0" is obtained if the integral in the exponential 
is approximately constant. This occurs when l'xg~, b 
and Ok have the same sign. In Fig. 4, l '  is - 1 '  and 
consequently the largest contribution is to the left of 
the dislocation for Ok > 0 and to the right for Ok < 0. 

The total thermal diffuse intensity is obtained by 
summing the contributions from several wave-vector 
errors Ok. In the calculation presented in Fig. 4 19 
6k values have been included. The long-range varia- 
tion of the total intensity is very weak as anticipated 
from equation (8). In this case the influence of phonon 
dispersion is very small, because the most important 
6k values are small compared to the distance between 
the dispersion surfaces I(k ° -  k-l ')zl ~_ Is_g1[ of the dom- 
inating phonon-scattering process. The minimum in 
the diffuse intensity close to the dislocation is caused 
by elastic scattering, preferentially between the pri- 
marily excited Bloch waves 0 and 1 in Fig. 3. This 
contrast is similar to the elastic bright-field contrast 
which has its dominating contribution from the same 
process. From a rather complex argument it follows 
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that the contrast in the diffuse intensity is slightly 
smaller than in the bright-field intensity. The contrast 
is much smaller for Igl • bl = 1 than for Igl • bl = 2. An 
example for Ig~. bl =2  at 1MV is given by Melander 
& Sandstr6m (1973). The total dislocation contrast in 
the -g~ beam including the elastic intensity is shown 
in Fig. 5. With an aperture radius of 0.2 of a 220 
reciprocal-lattice vector the visibility of the peak is 0.1 
(the concept of visibility is defined in § 8). 

An example of the thermal diffuse contrast at 100 
kV is presented in Fig. 6. An edge dislocation with 
[g~. b l=2  is in the middle of a Cu foil. The wave- 
vector conserving process has a maximum close to the 
dislocation. This can be realized from (5) since gt .  R 
changes rapidly by one when going from above to be- 
low the dislocation. This means that the phase will be 
the same over almost the whole foil thickness and the 
intensity of the perfect crystal will almost be obtained. 
The less rapid variation of the strain field at larger 
distances from the dislocation results in the minima 
some 400 A from the dislocation. The strong elastic 
scattering in the diffuse state between waves 1' and 2' 
in Fig. 2 gives rise to the minimum on the right-hand 
side of the dislocation. By summing over ten &k values 
the total diffuse intensity is obtained. The minimum 
to the left of the dislocation is caused by elastic scat- 
tering, mainly between 0 and 1 and between 1' and 0', 
and the minimum to the right is a result of the process 
1' to 2'. It can be observed that the total intensity to 
the left of the two minima is more than 10% higher 
than the intensity to the right. This effect cannot be 
predicted by the approximate formula (8) which ne- 
glects phonon dispersion. Iqzl for the process 0 ~ 1' 
equals l&k+ ~ ' -k° ) : l  which means that the most im- 
portant processes to the left of the dislocation (for 
which ilk<0) have smaller Iq:l values than the ones 
to the right (for which fik > 0) since (k 1 ' -  k°)= is posi- 
tive. A smaller Iqzl implies a larger intensity contribu- 
tion, as can be observed from (A10). The total diffuse 
intensity is thus slightly greater to the left of the dis- 
location than to the right. The total intensity including 
the elastic part is presented in Fig. 7. The diffuse in- 
tensity has a minimum where the elastic intensity has 
its maximum. The main influence of the diffuse in- 
tensity is to increase the background. 

6. Top-bottom effect 

The variation of the elastic contrast with the depth 
position of a lattice defect in the foil is usually affected 
by anomalous absorption. However, under weak-beam 
conditions the absorption parameters of the Bloch 
waves which give a significant contribution to the in- 
tensity are about the same; so the absorption has little 
influence on the contrast. All the same, the thermal 
diffuse contrast can be different from two dislocations, 
one close to the top surface and the other close to the 
bottom surface. This can be explained with the help 
of the dispersion surfaces in Fig. 2. 

If the dislocation is situated close to the top surface 
practically all elastic scattering takes place among the 
primarily excited states. This means that the processes 
0 to 1 and 0 to - 1  are dominating. With the disloca- 
tion in the middle of the foil the elastic scattering be- 
tween the diffuse states 1' to 0' and 1' to 2' is equally 
important (H is assumed to be about three). The first 
process gives the same contrast as the scattering from 
wave 0 to wave 1 and consequently the minimum to 
the left of the dislocation is insensitive to the disloca- 
tion position (cf. Fig. 8). The closer the dislocation is 
to the bottom surface the larger the influence of the 
process 1' to 2' is on the contrast. This is also clearly 
seen in Fig. 8 since the minimum to the right of the 
dislocation is due to the process 1' to 2'. If H is much 
bigger than 3 the scattering process 1' to 2' is no longer 
dynamical and consequently the top-bottom effect is 
small. In the calculations H is smaller than three. It 
is possible to show with the help of the lattice-bending 
criterion (Cockayne, Ray & Whelan, 1969) that for 
H larger than three the minimum will move to the left 
of the dislocation at least if H is sufficiently different 
from three. 

.01 
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Fig. 5. The central region of Fig. 4 including the elastic 
intensity. 
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Fig. 6. Thermal diffuse intensity around a 220 spot at 100 
kV. An edge dislocation, satisfying g~. b = 2 ,  is in the middle 
of a copper foil of thickness 675/~,. s220=0.02 /~-1 ( H =  
2.76). 
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The depth of the dislocation also affects the con- 
trast in another way. Calculations show that the in- 
tensity contribution from different wave-vector errors 
6k changes with the depth of the dislocation. If the 
dislocation is moved from the middle of the foil to- 
wards a foil surface the importance of the wave-vector 
conserving process is increased at the expense of the 
non-conserving processes. This implies that the asym- 
metry in the long-range contrast decreases (see § 5). 
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Fig. 7. The central region of Fig. 6 including the elastic 
intensity. 
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Fig. 8. Top-bottom effect of the thermal diffuse intensity. 
Same conditions as in Fig. 6. The dislocation is respectively 
100 A from the top surface, in the middle of the foil and 
100 A. from the bottom surface. 

7. Diffuse intensity in perfect crystals 

7.1. Thickness and aperture dependence of the thermal 
diffuse intensity 

If the crystal is oriented between two higher-order 
Bragg positions it is possible to obtain a simple ex- 
pression for the thermal diffuse intensity around the 
lgl spot in a perfect crystal. In a perfect crystal the 
first sum in equation (A4) vanishes and for the pre- 
scribed diffraction conditions in the second sum only 
the dominating term is kept (i=O, g = 0  and h=l 'gl) .  
Thus only the scattering process from 0 to l '  is con- 
sidered. As was shown in § 4 only the amplitudes for 
6k=O are important in a perfect crystal. After ab- 
sorption is introduced equation (A4) takes the follow- 
ing form after the application of equation (A5) 

, t' 4_2l 'g1[  hV ] u2 

exp [-½(/~°-/~v)t]-  1 
× - -  ( 1 0 )  

By making similar approximations in equation (A7) 
one finds that only one term in the sums over l and 
q~ must be kept in the first summation. The second 
term in (A7) is much smaller than the first one and is 
neglected: 

1 
I~',hgl(t)~-- ~[~o'(k~',t)l 2 exp (-lu't)A(qz, q~a~). (11) 

Recalling that p ° - / d  is small, one observes easily that 
the intensity (11) has a maximum at t~l/lut~_l//z °. 
Equations (10) and (11) have been used to calculate 
the diffuse intensity around a 220 reflexion. The inten- 
sity as a function of foil thickness is presented in Fig. 
9 for A1, Cu and Au at 1 MV and for Cu at 100 kV. 
Weak-beam images are usually obtained for foil thick- 
nesses between 200 and 800 A in Cu at 100 kV (Stobbs 
& Sworn, 1971). The calculations show that the thermal 
diffuse intensity increases by a factor of 1.6 over this 
region. The validity of the present single-phonon scat- 
tering theory for thicker foils has been investigated 
by calculating the intensity contribution from electrons 
that have been scattered twice by phonons. These 
electrons have first been scattered outside the aperture 
and then into the aperture. In the calculation the rigid- 
ion model has been used with an Einstein model. The 
details of the calculation are rather lengthy and are 
not presented here. For A1, Cu and Au we have found 
that the double-scattering intensity 12 relates to the 
single-scattering intensity/1 as 

I2/I~=0.2ltt . (12) 

Thus, at the maximum thickness presented for every 
curve in Fig. 9 the thermal diffuse intensity is under- 
estimated by about 30 %. 

From (10) and (11) we observe that Ir,h,l(t) is pro- 
portional to (l'gl/@gl) 2. One can check that this im- 
plies that the diffuse intensity for the considered metals 
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is greater in a 111 reflexion than in a 220 reflexion 
for the same excitation error. The aperture integral 
A(q=,q~ a~) increases with decreasing stgx and thus also 
the diffuse intensity increases with decreasing stgl. In 
Fig. 10 the variation of the thermal diffuse intensity 
with aperture radius is shown for Cu. The diffuse in- 
tensity is peaked around the reciprocal-lattice points, 
so quite a small aperture is required to reduce the 
intensity significantly. 

7.2. Contaminating layers 
We will also discuss the diffuse background intensity 

from contaminating carbon layers which are almost 
always present on the foil surfaces. An amorphous 
layer can scatter an incoming electron elastically or 
inelastically into the aperture around the lgl spot. This 
intensity can be estimated with the help of the theories 
of Lenz (1954) and Burge & Smith (1962). An amor- 
phous carbon layer of thickness D A thus gives an 
intensity of 1 . 10-5D around the 220 spot in copper 
at 100 kV when the aperture radius is 0.2 of a 220 
reciprocal-lattice vector. At 1 MV the intensity is 
smaller by a factor of (v~ Mv/Vt00 kV) 2'~ 3, where v is 
the relativistic electron velocity. For small radii the 
intensity is approximately proportional to the aper- 
ture radius squared. If the contaminating layers are 
not essentially thicker than 100 A together, their con- 
tribution to the background intensity 1 . 1 0  -3 at 100 
kV is significantly smaller than the thermal diffuse in- 
tensity for the foil thicknesses that are usually used in 
weak-beam microscopy. 

8. Visibility 

The visibility, as given by an elastic calculation, can 
be significantly reduced when the thermal diffuse in- 
tensity is taken into account. The visibility is defined 
a s  (Imax--Imin)/(Imax +Imin) where /max and Imin are the 
maximum and minimum intensities of a contrast pro- 
file. The elastic intensity has an oscillating dependence 
on the depth of the dislocation and the foil thickness, 
the period of the oscillations being S Tgtl (Sandstr6m, 
1973b). To obtain a measure of the visibility an aver- 
age over the oscillating terms of the intensity is taken. 
We use the approximate expressions for the intensity 
of the weak-beam peaks given by Sandstr6m (1973a) 
which are based on a simplified strain field and a 
kinematical approximation. After some algebra the 
average peak intensity emerges as 

IPeakH,,,~ [ K ]2 
lgl \ ' 1 - -  ~/gl" g~--l(H-l) [2+n2(gt" b)2] 

x exp ( - / z t ) ,  (13) 

where K is the wave vector of the incident electrons. 
The elastic background intensity close to the weak- 
beam peak is obtained from (13) if nZ(gt, b) 2 is re- 
placed by -}(gt. b) 2. The thermal diffuse intensity is 
approximated by the expression for the perfect crys- 

tal (11). The influence of contaminating layers is ne- 
glected. The visibility B can now be written as 

B ~  2s, " ( ~ 2 - ~ ) ' ( g x ' b ) 2  1 2 

x(gl.b)2]+212n2lg,(2hVM)l/212tA(q=,q~ax)}. (14) 

The derivation of (13) is very approximate but com- 
parisons with many-beam calculations indicate that it 
overestimates the visibility only by about 20%. We 
notice that B is independent of the accelerating voltage. 
Fig. 11 shows the visibility for a dislocation as a func- 
tion of foil thickness for aluminum, copper and gold. 
For aluminum the visibility is presented for two dif- 
ferent excitation errors. The dislocation is observed 
under the diffraction condition gl • b = 2. The visibility 
is about the same in Al, Cu and Au for a particular 
foil thickness and excitation error, but it is much lower 
in the lighter metals for a foil of thickness 2p (2p_ ~ 580A 
for Au, 2300 A for Cu and 10000 A for A1 at 1 MV, 
Hall & Hirsch, 1965). The visibility is presented for 
foil thicknesses up to the mean free path for phonon 
scattering 2p at 1 MV. It must be remembered, how- 
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Fig. 9. Thermal diffuse intensity (220) from a perfect crystal 
for A1, Cu and Au at 1MV and for Cu at 100 kV. The 
aperture radius is 0.2 of a 220 reciprocal-lattice vector 
in aluminum. The scale for the foil thickness is changed 
at 4000 .K. 
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Fig. 10. Thermal diffuse intensity (220) versus aperture radius 
for copper foil. ]s220]=0.02 A -1. The form of the curve 
is the same for every foil thickness. 
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ever, that the theory is not applicable for foil thick- 
nesses much larger than 2p which means that the 
diagram is not valid along the whole abscissa at lower 
voltages since 2p is proportional to v z. 

If the excitation error is reduced the elastic intensity 
increases more rapidly than the thermal diffuse in- 
tensity and thus the visibility increases. This is seen 
in Fig. 11 for aluminum by comparing the curves for 
Sza0=0"02 A -~ and s220=0.01 A -~. The resolution de- 
creases simultaneously, however, because the half width 
of the weak-beam peak is proportional to Ist~l1-1 (de 
Ridder & Amelinckx, 1971). The visibility for a dis- 
location as function of aperture radius is presented in 
Fig. 12. An aperture smaller than 0.15 of a 220 recip- 

1 . 0 -  
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f o i l  t h i c k n e s s  

Fig. 11. Visibility in the 220 image of a dislocation satisfying 
Igt. h i = 2  for AI (denoted A1, 1), Cu and Au with an 
excitation error of 0.02 A -~ and for A1 (denoted AI, 2) 
with $220=0"01 /~k -1. 
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Fig. 12. Visibility in the 220 image of a dislocation satisfying 
Igl • bl =2 in a 3000 A thick aluminum foil. Is=01 =0.02 A-' .  

rocal-lattice vector is required to increase the visibility 
significantly. However, such a small aperture will on 
the other hand impair the resolution according to the 
fundamental diffraction limit. To maximize the visi- 
bility gl should of course be parallel to b since the 
elastic peak intensity is proportional to Igl • bl z. 

The thermal diffuse intensity decreases if the tem- 
perature is lowered. Calculations under the same con- 
ditions as in Fig. 12, and using an aperture radius of 
0.2 of a 220 reciprocal-lattice vector, show an increase 
in the visibility from 0.3 at 300 K to 0.5 at 80 K and 
to 0.6 at 0 K. 

In contrast to the visibility, the elastic peak intensity 
depends on the accelerating voltage as can be seen 
from equation (13). If we use the same excitation error 
at all voltages the peak intensity is proportional to 

1p~ak oc exp -/~1 v ° t (15) , t / g  1 • - . . . . .  . • 

where the relativistic corrections o f /z  and ~ have 
been included. For a certain foil thickness the maxi- 
mum intensity is obtained for the accelerating voltage 

E= m°c2 1 - 1 if t < /~oo • 
e [ Vaoo~ 2 - V-~oo 

1 -   ,oo. t 

The maximum intensity is proportional to t -1. For 
foils thicker than (c/v~oo)2//qoo the maximum voltage 
should be used to maximize intensity. 

Conclusions 

1. In weak-beam images the thermal diffuse and 
elastic intensities are comparable in magnitude for foil 
thicknesses of the order of the mean free path for 
electron-phonon scattering. 

2. Phonon scattering processes where the wave vec- 
tor is not conserved in the direction of the foil normal 
play an important role in the contrast formation. 

3. The thermal diffuse intensity has a minimum at 
the position of the weak-beam peak in a similar way 
to in the elastic bright-field contrast. 

4. If the total thickness of contaminating carbon 
layers is approximately 100 •, the diffuse intensity 
from them is much smaller than the thermal diffuse 
intensity for foil thicknesses conventionally used in 
weak-beam investigations. 

5. The visibility in weak-beam images is indepen- 
dent of the accelerating voltage. For a certain foil 
thickness and excitation error the visibility is com- 
parable for different metals. 

APPENDIX 

In the deformable-ion model the interaction between 
the incident electron and the lattice is given by 

V(r)= V~,[r- R(r)- u(r)]. 
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Vp is the potential of the perfect crystal and u(r) are 
the atom displacements due to lattice vibrations. The 
Hamiltonian H(r) is obtained by expanding V(r) in a 
Taylor series in u(r) and keeping first-order terms in 
u(r). The influence of the strain field on the phonon 
modes has been neglected and the perfect crystal ex- 
pansion of u(r) has been used (see e.g. Pines, 1963). 
The Hamiltonian for the electron-phonon system in 
the deformable ion model can be written as 

h2 7 z ~ Vg exp {2nig[r-R(r)]} H ( r ) = - 2 - ~  - 

- ~ Vg exp (2nig[r-R(r)]} ( -2h i )  (eq,. g) 
gql 

x 2N~/~Oq exp (2niq. r) (a~+a+_.q~) 

+ ~, l~Oq~(a+~aq~ +½). (A1) 
q~ 

The potential parameters V~ include Debye-Waller 
factors, aq~ is the annihilation operator of the phonon 
mode (q, 2). The phonon wave vectors q are restricted 
to the first Brillouin zone. We adopt the column ap- 
proximation and assume that the electron-phonon 
state can be written (z axis parallel to the foil normal) 

~t(r)= ~ {oO~8,z)bO~8,r)lQ), (A2) 
o~ 

where [Q)=ln, tx~...n,,~... .).  The Bloch wave 
b(ko ~, r) is given by (Wilkens, 1964) 

bO~Jo, r )=~ C~exp2ni{kJo.r+g[r-R(z)]}. (A3) 
g 

The summation in (A2) is taken over all phonon states 
Q and over all Bloch states such that the total energy 
is constant. 

From the Schr6dinger equation we obtain the Bloch- 
wave amplitudes by performing 

I I °° dxdyb*(k~±,r)(p±[, 
- -  c o l  

± 0 0 where [p )=[nqa~. . .  (n~:q ~, + 1) . . .  ). The upper signs 
• ? 1  - -  

correspond to creaUon of one phonon ( -q , ,2 , )  and 
the lower signs to annihilation of one phonon. We 
neglect multiple-phonon scattering as well as second- 
order derivatives of R(z) and ~0(k~,z) and obtain for 
creation of phonons 

d 
dz (o(k~+, z) 

=2ni ~ C~*(g . d--~) C~exp [2ni(k~+ 

z] 0g+,z) 

+2n 2 ~. C~* 1 [h(n°q~ + 1)] 1/2 
gh, ~ C~[~:qx. (h-g)]  [ 2NMCOq~ ] 

× exp [2ni(k~ +q-k~+)~ .  z]~(kio, Z). (A4) 

For phonon annihilation (1) is identical to (A4) except 
that 0 n_q~+ 1 has to be replaced by n%. Absorption 
is introduced by letting k~--~k~+i/ /4n,  where ~u z is 
the absorption coefficient for Bloch wave 1. Through 
the following transformations the equations (1) and 
(A4) become independent of polarization index and 
whether a phonon is created or annihilated: 

[ ,,o 

(0(kpt - ,z )=(ce ,~  • g l )  LCOq~. V J (o ' (k~ ,z) ,  (A5)  

where V is the crystal volume. Only systematic recip- 
rocal-lattice vectors are taken into account. ~ is g~/g~ 
where g~ is the first-order reciprocal-lattice vector of 
the systematic row. Thus for every phonon wave vec- 
tor only one equation has to be solved. The Debye 
model is used to describe the phonon dispersion rela- 
tions. The summation over the polarization indices 
can now be performed and phonon creation and an- 
nihilation can be taken together. The factor depend- 
ing on q takes the following form 

g'  (~.,.  ~1) 2 2n, + 1 2n~ + 1 
(A6) 

COq (.DO 

where the temperature average has been taken, n~= 
1/[exp (hvoq/ksT)-1] where k8 is Boltzmann's con- 
stant, T the temperature, and the Debye velocity vo= 

( 4~ V\~/3-.. kBOo ~) /h. The numerical values of the Debye 

temperature OD in International Tables for X-ray Crys- 
tallography (1962) have been used. 

If the transformed amplitudes (A5) are approxi- 
mated to be independent of qx and qy the thermal dif- 
fuse intensity (2) accepted by the aperture around g 
can be written as 

1 ~ ~ (kp, t)C~l 2 exp (-/t)A(qz, q~ ax) I ' ' 
qz 

+ '* " ' , *  ' "- 2Re[¢ (kp,t)Cg q~O~p, 
l l  q=l 2 

× exp [2ni(k~2- k~a)zt ]1 

x exp [ - i ( / ~  +/gt]B(q~,qF~,t)} (A7) 

A(qz, q~aX) I~  ax 2na+l = 2nq, dql t (A8) vo • q 

(,q~aX iz0,~d0 2nq+ 1 B(qz'q~aX't)= ~0 qHdql' V--DDIq 

[2nt(kp -ko -kp +k0)~. t ] .  (A9) × exp • t2 t2 h h 

All states included in the summation over l, h and/2 
have been scattered from the initially excited Bloch 
waves by the same phonon, t is the foil thickness and 
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qH is the component of the phonon wave vector q in 
the plane of the aperture, q~ax is the radius of the 
aperture and q2=q~+q~. 0 is the angle between qlJ 
and the direction of the systematic row fgl. We in- 
troduce the following approximations in (A8): q is put 
equal to q~ and the lower integration limit is replaced 
by Iqz[. The integral can now be solved analytically as 

2zc ~ 2kn. T max -l.- 
A(qz'g~ax)~ --Vo [Iqzl-qlt - hVD 

[exp ( k n ~ T  q~ax)--~] ] 
x ln  - - - / - ~ v o - -  . (A10) texp( q ) 

The approximation is very good if q'~a'~>>lqz I. (A10) 
is found to agree within one per cent with accurate 
numerical evaluations of (A8) if qpax>0"15 A -1 and 
Iqzl =0.02 A -I. 

The integral over 0 in (A9) is evaluated by approx- 
imating + 2~ 2 ( k o ) z - K - ( H / 2 - l ) 2 g ~  and (k~)~_K2-(H/2 
-l+qx/gO2g~ where K is the wave vector of the in- 
cident electron and the Ewald sphere intersects the 
systematic row at H gt. Thus ~ 2  t.z2 k~t+k~)~~ • knp  - -  ~0  - -  - -  

(12-ll)gtqll cos O/K and 

max 2n~ + 1 
B(q~, q~l ax, t) ~ I qtl 2rcqH dql I 

,~0 Voq 

XJo(2n(12-1Og~qut/K), (Al l )  

where Jo is the zeroth-order Bessel function• J0 causes 
the t-oscillating terms of the intensity to be damped 
out for large apertures. 
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